例如:"lncRNA", "apoptosis", "WRKY"

A novel rasH2 mouse carcinogenesis model that is highly susceptible to 4-NQO-induced tongue and esophageal carcinogenesis is useful for preclinical chemoprevention studies.

Carcinogenesis. 2008 Feb;29(2):418-26. Epub 2008 Jan 03
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


We investigated the susceptibility of 4-nitroquinoline 1-oxide (4-NQO)-induced tongue carcinogenesis in male CB6F1-Tg-rasH2 @Jcl mice (Tg mice). The Tg mice were administered 4-NQO (20 p.p.m. in drinking water) for 2, 4, 6 or 8 weeks, and thereafter they were untreated up to week 24. At week 24, a higher incidence (80%) of tongue neoplasm with dysplasia was noted in the mice that received 4-NQO for 8 weeks in comparison with the other groups (20% incidence for each) treated with 4-NQO for 2, 4 and 6 weeks. Esophageal tumors also developed in the Tg mice were 4-NQO. Immunohistochemical observation revealed that the EP receptors, especially EP(1) and EP(2), expressed in the tongue and esophageal lesions induced by 4-NQO, thus suggesting the involvement of prostaglandin (PG) E(2) and EP(1,2) receptors in the tongue and esophageal carcinogenesis. Using this animal model, we investigated the potential chemopreventive ability of pitavastatin (1, 5 and 10 p.p.m. in diet for 15 weeks), starting 1 week after the cessation of 4-NQO-exposure (20 p.p.m. in drinking water for 8 weeks). Dietary pitavastatin at 10 p.p.m. significantly reduced the incidence and multiplicity of the tongue, but not esophageal neoplasms by the modulation of prostaglandin E2 biosynthesis, EP(1) and EP(2) expression and proliferation. Our results thus suggest that a rasH2 mouse model of 4-NQO-induced tongue and esophageal carcinogenesis can be utilized for investigating the pathogenesis of cancer development in these tissues and may well prove to be useful for identifying candidate cancer chemopreventive agents for the upper digestive organs.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读