例如:"lncRNA", "apoptosis", "WRKY"

Transport proteins PotD and Crr of Escherichia coli, novel fusion partners for heterologous protein expression.

Biochim. Biophys. Acta. 2007 Dec;1774(12):1536-43. Epub 2007 Oct 04
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


The Escherichia coli proteome response to the stressor GdnHCl was analyzed through 2-dimensional gel electrophoresis (2-DE). We identified PotD (spermidine/putrescine-binding periplasmic protein) and Crr [glucose-specific phosphotransferase (PTS) enzyme IIA component] as a stress-responsive protein. Even under a stress situation where the total number of soluble proteins decreased by about 10%, 3.5- and 2.2-fold increase was observed in the synthesis of PotD and Crr, respectively. As fusion partners, PotD and Crr dramatically increased the solubility of many aggregation-prone heterologous proteins [e.g. human minipro-insulin (mp-INS), human epidermal growth factor (EGF), human prepro-ghrelin (ppGRN), human interleukin-2(hIL-2), human activation induced cytidine deaminase (AID), human glutamate decarboxylase (GAD(448-585)), Pseudomonas putida cutinase (CUT), human ferritin light chain (hFTN-L), human granulocyte colony-stimulating factor (G-CSF), and cold autoinflammatory syndrome1 protein (NALP3) Nacht domain (NACHT)] in the E. coli cytoplasm. Presumably PotD and Crr were very effective in shielding interactive surfaces of heterologous proteins associated with non-specific protein-protein interactions leading to the formation of inclusion bodies most likely due to intrinsic high folding efficiency, chaperone-like activity, or a combination of both factors. Both the stress-induced proteins were well suited for the production of a biologically active fusion mutant of P. putida cutinase that can be expected to be of biotechnological and commercial interest.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读