例如:"lncRNA", "apoptosis", "WRKY"

Seizures and reduced life span in mice lacking the potassium channel subunit Kv1.2, but hypoexcitability and enlarged Kv1 currents in auditory neurons.

J. Neurophysiol.2007 Sep;98(3):1501-25. Epub 2007 Jul 18
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Genes Kcna1 and Kcna2 code for the voltage-dependent potassium channel subunits Kv1.1 and Kv1.2, which are coexpressed in large axons and commonly present within the same tetramers. Both contribute to the low-voltage-activated potassium current I Kv1, which powerfully limits excitability and facilitates temporally precise transmission of information, e.g., in auditory neurons of the medial nucleus of the trapezoid body (MNTB). Kcna1-null mice lacking Kv1.1 exhibited seizure susceptibility and hyperexcitability in axons and MNTB neurons, which also had reduced I Kv1. To explore whether a lack of Kv1.2 would cause a similar phenotype, we created and characterized Kcna2-null mice (-/-). The -/- mice exhibited increased seizure susceptibility compared with their +/+ and +/- littermates, as early as P14. The mRNA for Kv1.1 and Kv1.2 increased strongly in +/+ brain stems between P7 and P14, suggesting the increasing importance of these subunits for limiting excitability. Surprisingly, MNTB neurons in brain stem slices from -/- and +/- mice were hypoexcitable despite their Kcna2 deficit, and voltage-clamped -/- MNTB neurons had enlarged I Kv1. This contrasts strikingly with the Kcna1-null MNTB phenotype. Toxin block experiments on MNTB neurons suggested Kv1.2 was present in every +/+ Kv1 channel, about 60% of +/- Kv1 channels, and no -/- Kv1 channels. Kv1 channels lacking Kv1.2 activated at abnormally negative potentials, which may explain why MNTB neurons with larger proportions of such channels had larger I Kv1. If channel voltage dependence is determined by how many Kv1.2 subunits each contains, neurons might be able to fine-tune their excitability by adjusting the Kv1.1:Kv1.2 balance rather than altering Kv1 channel density.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读