[No authors listed]
Squalene monooxygenase is a microsomal enzyme that catalyzes the conversion of squalene to 2,3(s)-oxidosqualene, the immediate precursor to lanosterol in the cholesterol biosynthesis pathway. Unlike other flavoprotein monooxygenases that obtain electrons directly from NAD(P)H, squalene monooxygenase requires a redox partner, and for many years it has been assumed that NADPH-cytochrome P450 reductase is this requisite redox partner. However, our studies with hepatic cytochrome P450-reductase-null mice have revealed a second microsomal reductase for squalene monooxygenase. Inhibition studies with antibody to P450 reductase indicate that this second reductase supports up to 40% of the monooxygenase activity that is obtained with microsomes from normal mice. Studies carried out with hepatocytes from CPR-null mice demonstrate that this second reductase is active in whole cells and leads to the accumulation of 24-dihydrolanosterol; this lanosterol metabolite also accumulates in the livers of CPR-null mice, indicating that cholesterol synthesis is blocked at lanosterol demethylase, a cytochrome P450.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |