例如:"lncRNA", "apoptosis", "WRKY"

BIG1, a brefeldin A-inhibited guanine nucleotide-exchange protein, is required for correct glycosylation and function of integrin beta1.

Proc. Natl. Acad. Sci. U.S.A.2007 Jan 23;104(4):1230-5. Epub 2007 Jan 16
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Glycosylation of beta1 integrin (beta1) in the Golgi complex has been related to its function in multiple cell processes, e.g., invasiveness, matrix adhesion, and migration. Brefeldin A-inhibited guanine nucleotide-exchange proteins (BIG) 1 and BIG2 activate human ADP-ribosylation factors (ARF) 1 and ARF3 by catalyzing the replacement of ARF-bound GDP with GTP to regulate Golgi vesicular transport. We show here a requirement for BIG1 (but not BIG2) in glycosylation and function of beta1. In HepG2 cells treated for 48 or 72 h with BIG1, but not BIG2, siRNA, both the amount and electrophoretic mobility of the initially 130-kDa beta1 were increased. BIG1 content had risen by 48 h after removal of BIG1 siRNA, and the faster-migrating, aberrant 130-kDa beta1 was not seen. Peptide N-glycosidase F, but not endoglycosidase H, digestion converted all beta1 to an approximately 85-kDa (core protein) form. By electron microscopy, Golgi membranes in BIG1-depleted cells were less sharply defined than those in mock or BIG2 siRNA-treated cells, with more vesicle-like structures at the transface. Amounts of active RhoA-GTP also were decreased in such cells and restored by overexpression of HA-BIG1. Aberrant beta1 was present on the cell surface, but its function in cell spreading, adhesion, and migration was impaired. By immunofluorescence microscopy, BIG1 siRNA-treated cells showed less spreading and concentration of beta1 at the cell surface. These results indicate a previously unrecognized role for BIG1 in the glycosylation of beta1 by Golgi enzymes, which is critical for its function in developmental and other vital cell processes.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读