例如:"lncRNA", "apoptosis", "WRKY"

A transcription factor cascade involving Fep1 and the CCAAT-binding factor Php4 regulates gene expression in response to iron deficiency in the fission yeast Schizosaccharomyces pombe.

Eukaryotic Cell. 2006 Nov;5(11):1866-81. Epub 2006 Sep 08
Alexandre Mercier 1 , Benoit Pelletier , Simon Labbé
Alexandre Mercier 1 , Benoit Pelletier , Simon Labbé

[No authors listed]

Author information
  • 1 Département de Biochimie, Faculté de Médecine, Université de Sherbrooke, 3001 12e Ave. Nord, Sherbrooke, Québec J1H 5N4, Canada.

摘要


We have identified genes encoding candidate proteins involved in iron storage (pcl1+), the tricarboxylic acid cycle (sdh4+), and iron-sulfur cluster assembly (isa1+) that are negatively regulated in response to iron deprivation. Promoter deletion and site-directed mutagenesis permitted identification of a new cis-regulatory element in the promoter region of the pcl1+ gene. This cis-acting regulatory sequence containing the pentanucleotide sequence CCAAT is responsible for transcriptional repression of pcl1+ under low iron supply conditions. In Schizosaccharomyces pombe, the CCAAT-binding factor is a heteromeric DNA-binding complex that contains three subunits, designated Php2, Php3, and Php5. Inactivation of the php2+ locus negatively affects the transcriptional competency of pcl1+. A fourth subunit, designated Php4, is not essential for the transcriptional activation of target genes under basal and iron-replete conditions. We demonstrate that, in response to iron-limiting conditions, Php4 is required for down-regulation of pcl1+, sdh4+, and isa1+ mRNA levels. In vivo RNase protection studies reveal that the expression of php4+ is negatively regulated by iron and that this regulated expression requires a functional fep1+ gene. The results of these studies reveal that Fep1 represses php4+ expression in response to iron. In contrast, when iron is scarce, Fep1 becomes inactive and php4+ is expressed to act as a regulatory subunit of the CCAAT-binding factor that is required to block pcl1+, sdh4+, and isa1+ gene transcription.