例如:"lncRNA", "apoptosis", "WRKY"

APETALA1 and SEPALLATA3 interact with SEUSS to mediate transcription repression during flower development.

Development. 2006 Aug;133(16):3159-66. Epub 2006 Jul 19
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


The transcriptional repression of key regulatory genes is crucial for plant and animal development. Previously, we identified and isolated two Arabidopsis transcription co-repressors LEUNIG (LUG) and SEUSS (SEU) that function together in a putative co-repressor complex to prevent ectopic AGAMOUS (AG) transcription in flowers. Because neither LUG nor SEU possesses a recognizable DNA-binding motif, how they are tethered to specific target promoters remains unknown. Using the yeast two-hybrid assay and a co-immunoprecipitation assay, we showed that APETALA1 (AP1) and SEPALLATA3 (SEP3), both MADS box DNA-binding proteins, interacted with SEU. The AP1-SEU protein-protein interaction was supported by synergistic genetic interactions between ap1 and seu mutations. The role of SEU proteins in bridging the interaction between AP1/SEP3 and LUG to repress target gene transcription was further demonstrated in yeast and plant cells, providing important mechanistic insights into co-repressor function in plants. Furthermore, a direct in vivo association of SEU proteins with the AG cis-regulatory element was shown by chromatin immunoprecipitation. Accordingly, a reporter gene driven by the AG cis-element was able to respond to AP1- and SEP3-mediated transcriptional repression in a transient plant cell system when supplied with SEU and LUG. These results suggest that AP1 and SEP3 may serve as the DNA-binding partners of SEU/LUG. Our demonstration of the direct physical interaction between SEU and the C-terminal domain of SEP3 and AP1 suggests that AP1 and SEP3 MADS box proteins may interact with positive, as well as negative, regulatory proteins via their C-terminal domains, to either stimulate or repress their regulatory targets.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读