例如:"lncRNA", "apoptosis", "WRKY"

AlkB dioxygenase in preventing MMS-induced mutagenesis in Escherichia coli: effect of Pol V and AlkA proteins.

DNA Repair (Amst.). 2006 Feb 3;5(2):181-8. Epub 2005 Oct 13
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


The deleterious effect of defective alkB allele encoding 1meA/3meC dioxygenase on reactivation of MMS-treated phage DNA has been frequently studied. Here, it is shown that: (i) AlkB protects the cells not only against the genotoxic but also against the potent mutagenic activity of MMS; (ii) mutations arising in alkB-defected strains are umuDC-dependent, and deletion of umuDC dramatically reduce MMS-induced mutations resulting from the presence of 1meA/3meC in DNA; (iii) specificity of MMS-induced argE3-->Arg+ reversions in AB1157 alkB-defective cells are predominantly AT-->TA transversions and GC-->AT transitions; (iv) overproduction of AlkA and the resultant decrease in 3meA residues in DNA dramatically reduce MMS-induced mutations. This reduction is most probably a secondary effect of AlkA due to a decrease in 3meA residues in DNA and, in consequence, suppression of SOS induction and Pol V expression. Overproduction of UmuD'C proteins reverses this effect.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读