例如:"lncRNA", "apoptosis", "WRKY"

Profound ataxia in complexin I knockout mice masks a complex phenotype that includes exploratory and habituation deficits.

Hum. Mol. Genet.2005 Aug 15;14(16):2369-85. Epub 2005 Jul 06
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Complexins are presynaptic proteins that bind to the SNARE complex where they modulate neurotransmitter release. A number of studies report changes in complexins in psychiatric (schizophrenia and depression) and neurodegenerative disorders (Huntington's disease, Wernicke's encephalopathy and Parkinson's disease). Here, we characterize the behavioural phenotype of Cplx1 knockout (Cplx1-/-) mice. Cplx1-/- mice develop a strong ataxia in the absence of cerebellar degeneration. Although originally reported to die within 2-4 months after birth, when reared using an enhanced feeding regime, these mice survive normally (i.e. >2 years). Cplx1-/- mice show pronounced deficits in motor coordination and locomotion including abnormal gait, inability to run or swim, impaired rotarod performance, reduced neuromuscular strength, dystonia and resting tremor. Although the abnormal motor phenotype dominates their overt symptoms, Cplx1-/- mice also show other behavioural deficits, particularly in complex behaviours. They have deficits in grooming and rearing behaviour and show reduced exploration in several different paradigms. They also show deficits in tasks reflecting emotional reactivity. They fail to habituate to confinement and show a 'panic' response when exposed to water. The abnormalities seen in the behaviour of Cplx1-/- mice reflect those predicted from the distribution of complexin I in the brain. Our data show that complexin I is essential not only for normal motor function in mice, but also for normal performance of other complex behaviours. These results support the idea that altered expression of complexins in disease states may contribute to the symptomatology of disorders in which they are dysregulated.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读