例如:"lncRNA", "apoptosis", "WRKY"

Sorting and activity-dependent secretion of BDNF require interaction of a specific motif with the sorting receptor carboxypeptidase e.

Neuron. 2005 Jan 20;45(2):245-55
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Activity-dependent secretion of BDNF is important in mediating synaptic plasticity, but how it is achieved is unclear. Here we uncover a sorting motif receptor-mediated mechanism for regulated secretion of BDNF. X-ray crystal structure analysis revealed a putative sorting motif, I(16)E(18)I(105)D(106), in BDNF, which when mutated at the acidic residues resulted in missorting of proBDNF to the constitutive pathway in AtT-20 cells. A V20E mutation to complete a similar motif in NGF redirected a significant proportion of it from the constitutive to the regulated pathway. Modeling and binding studies showed interaction of the acidic residues in the BDNF motif with two basic residues in the sorting receptor, carboxypeptidase E (CPE). (35)S labeling experiments demonstrated that activity-dependent secretion of BDNF from cortical neurons was obliterated in CPE knockout mice. Thus, we have identified a mechanism whereby a specific motif I(16)E(18)I(105)D(106) interacts with CPE to sort proBDNF into regulated pathway vesicles for activity-dependent secretion.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读