例如:"lncRNA", "apoptosis", "WRKY"

Ubiquinone biosynthesis in microorganisms.

FEMS Microbiol. Lett.2001 Sep 25;203(2):131-9
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


The quinoid nucleus of the benzoquinone, ubiquinone (coenzyme Q; Q), is derived from the shikimate pathway in bacteria and eukaryotic microorganisms. Ubiquinone is not considered a vitamin since mammals synthesize it from the essential amino acid tyrosine. Escherichia coli and other Gram-negative bacteria derive the 4-hydroxybenzoate required for the biosynthesis of Q directly from chorismate. The yeast, Saccharomyces cerevisiae, can either form 4-hydroxybenzoate from chorismate or tyrosine. However, unlike mammals, S. cerevisiae synthesizes tyrosine in vivo by the shikimate pathway. While the reactions of the pathway leading from 4-hydroxybenzoate to Q are the same in both organisms the order in which they occur differs. The 4-hydroxybenzoate undergoes a prenylation, a decarboxylation and three hydroxylations alternating with three methylation reactions, resulting in the formation of Q. The methyl groups for the methylation reactions are derived from S-adenosylmethionine. While the prenyl side chain is formed by the 2-C-methyl-D-erythritol 4-phosphate (non-mevalonate) pathway in E. coli, it is formed by the mevalonate pathway in the yeast.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读