例如:"lncRNA", "apoptosis", "WRKY"

IFN-tau: a novel subtype I IFN1. Structural characteristics, non-ubiquitous expression, structure-function relationships, a pregnancy hormonal embryonic signal and cross-species therapeutic potentialities.

Biochimie. 1998 Aug-Sep ;80(8-9):755-77
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


IFN-tau (IFN-tau) constitutes a new class of type I IFN which is not virus-inducible, unlike IFN-alpha and IFN-beta, but is constitutively produced by the trophectoderm of the ruminant conceptus during a very short period in early pregnancy. It plays a pivotal role in the mechanisms of maternal recognition of pregnancy in ruminants and it displays high antiviral and antiproliferative activities across species with a prominent lack of cytotoxicity at high concentrations in vitro in cell culture and possibly in vivo. It exhibits high antiretroviral activity against HIV and exhibits immunosuppressive activity in a multiple sclerosis model and reduces embryo and fetal mortality by stimulation of IL-10 production. In this review all the biochemical and para-hormonal properties of this novel IFN-tau are described in detail: structural characteristics of proteins and genes, trophoblast expression, regulation of its expression, structure of its gene promoter, its absence in human species and in non-ruminant animals, the evolution of the IFN-tau genes, its structure-function relationships with its three-dimensional structure, structural localization of biological activities, its lack of cytotoxicity and its receptor. Surprisingly, for an IFN, IFN-tau is also a pregnancy-embryonic signal with paracrine antiluteolytic activity. In order to maintain luteal progesterone secretion, IFN-tau inhibits PGF-2alpha pulsatile secretion and oxytocin uterine receptivity in early pregnancy. It is believed to suppress pulsatile release of endometrial PGF-2alpha by preventing oxytocin and estrogen receptor expression. Additionally, it directly regulates prostaglandin metabolism and possibly the PGE:PGF-2alpha ratio.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读