[No authors listed]
The vertebrate lens is a relatively simple cellular structure that has evolved to refract light. The ability of the lens to focus light on the retina derives from a number of properties including the expression at high levels of a selection of soluble proteins referred to as the crystallins. In the present study, we have used differential cDNA display techniques to identify a novel, highly abundant and soluble lens protein. Though related to the family of soluble lectins called galectins, it does not bind beta-galactoside sugars and has atypical sequences at normally conserved regions of the carbohydrate-binding domain. Like some galectin family members, it can form a stable dimer. It is expressed only in the lens and is located at the interface between lens fiber cells despite the apparent lack of any membrane-targeting motifs. This protein is designated GRIFIN (galectin-related inter-fiber protein) to reflect its exclusion from the galectin family given the lack of affinity for beta-galactosides. Although the abundance, solubility, and lens-specific expression of GRIFIN would argue that it represents a new crystallin, its location at the fiber cell interface might suggest that its primary function is executed at the membrane.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |