例如:"lncRNA", "apoptosis", "WRKY"

Genetic analysis of an essential cytoplasmic domain of Escherichia coli SecY based on resistance to Syd, a SecY-interacting protein.

Mol. Gen. Genet.1998 May;258(3):240-9. doi:10.1007/s004380050728
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


We previously described a dominant negative secY-d1 allele in Escherichia coli, whose product interferes with protein export, presumably by sequestering SecE, the stabilizing partner of SecY. Syd is the product of a multicopy suppressor of the secY-d1 phenotype, and its overproduction preferentially stabilizes the wild-type SecY protein. In contrast, overproduction of Syd is toxic to the secY24 mutant, which shows a partial defect in SecY-SecE interaction. We isolated Syd-resistant revertants from the secY24 mutant. Pseudo-reversions mapped to sites at or near the secY24 mutation site (Gly240-->Asp). The secY249 mutation (Ala249-->Val) intragenically suppressed Syd sensitivity, but not the temperature-sensitive Sec phenotype of the secY24 mutation. The SecY249 mutant protein shows a reduced capacity to be stabilized by Syd, suggesting that the mutation weakens the SecY-Syd interaction. The other two mutations changed residue 240 (the site of the secY24 alteration) to Asn (secY245) or Ala (secY241) and restored the ability of the cell to export protein. Although the secY245 mutant retained some sensitivity to Syd overproduction, the secY241 mutant was completely Syd-resistant. Furthermore, the secY241 mutation seemed to represent a "hyper reversion" with respect to the SecY-SecE interaction. Protein export in this mutant was no longer sensitive to SecY-d1. When the secY-d1 mutation was combined intragenically with secY241, the resulting double mutant gene (secY-d1-241) showed an increased ability to interfere with protein export. On the basis of our model for SecY-d1, these results suggest that the secY241 alteration enhances SecY-SecE interaction. These results indicate that residue 240 of SecY is crucial for the interaction between the cytosolic domains of SecY and SecE required for the establishment of the translocase complex.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读