例如:"lncRNA", "apoptosis", "WRKY"

Crystal structure of porcine cathepsin H determined at 2.1 A resolution: location of the mini-chain C-terminal carboxyl group defines cathepsin H aminopeptidase function.

Structure. 1998 Jan 15;6(1):51-61
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


BACKGROUND:Cathepsin H is a lysosomal cysteine protease, involved in intracellular protein degradation. It is the only known mono-aminopeptidase in the papain-like family and is reported to be involved in tumor metastasis. The cathepsin H structure was determined in order to investigate the structural basis for its aminopeptidase activity and thus to provide the basis for structure-based design of synthetic inhibitors. RESULTS:The crystal structure of native porcine cathepsin H was determined at 2.1 A resolution. The structure has the typical papain-family fold. The so-called mini-chain, the octapeptide EPQNCSAT, is attached via a disulfide bond to the body of the enzyme and bound in a narrowed active-site cleft, in the substrate-binding direction. The mini-chain fills the region that in related enzymes comprises the non-primed substrate-binding sites from S2 backwards. CONCLUSIONS:The crystal structure of cathepsin H reveals that the mini-chain has a definitive role in substrate recognition and that carbohydrate residues attached to the body of the enzyme are involved in positioning the mini-chain in the active-site cleft. Modeling of a substrate into the active-site cleft suggests that the negatively charged carboxyl group of the C terminus of the mini-chain acts as an anchor for the positively charged N-terminal amino group of a substrate. The observed displacements of the residues within the active-site cleft from their equivalent positions in the papain-like endopeptidases suggest that they form the structural basis for the positioning of both the mini-chain and the substrate, resulting in exopeptidase activity.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读