例如:"lncRNA", "apoptosis", "WRKY"

Topology of NAT2, a prototypical example of a new family of amino acid transporters.

J Biol Chem. 1997 Nov 28;272(48):30552-7
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Amino acids are the predominant form of nitrogen available to the heterotrophic tissues of plants. These essential organic nutrients are transported across the plasma membrane of plant cells by proton-amino acid symporters. Our lab has cloned an amino acid transporter from Arabidopsis, NAT2/AAP1, that represents the first example of a new class of membrane transporters. We are investigating the structure and function of this porter because it is a member of a large gene family in plants and because its wide expression pattern suggests it plays a central role in resource allocation. In the results reported here, we investigated the topology of NAT2 by engineering a c-myc epitope on either the N or C terminus of the protein. We then used in vitro translation, partial digestion with proteinase K, and immunoprecipitation to identify a group of oriented peptide fragments. We modeled the topology of NAT2 based on the lengths of the peptide fragments that allowed us to estimate the location of protease accessible cleavage sites. We independently identified the location of the N and C termini using immunofluorescence microscopy of NAT2 expressed in COS-1 cells. We also investigated the glycosylation status of several sites of potential N-linked glycosylation. Based on the combined data, we propose a novel 11 transmembrane domain model with the N terminus in the cytoplasm and C terminus facing outside the cell. This model of protein topology anchors our complementary investigations of porter structure and function using site-directed and random mutagenesis.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读