例如:"lncRNA", "apoptosis", "WRKY"

Mouse mast cell protease 9, a novel member of the chromosome 14 family of serine proteases that is selectively expressed in uterine mast cells.

J Biol Chem. 1997 Nov 14;272(46):29158-66
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Mouse mast cell protease (mMCP) 1, mMCP-2, mMCP-4, and mMCP-5 are members of a family of related serine proteases whose genes reside within an approximately 850 kilobase (kb) complex on chromosome 14 that does not readily undergo crossover events. While mapping the mMCP-1 gene, we isolated a novel gene that encodes a homologous serine protease designated mMCP-9. The mMCP-9 and mMCP-1 genes are only approximately 7 kb apart on the chromosome and are oriented back to back. The proximity of the mMCP-1 and mMCP-9 genes now suggests that the low recombination frequency of the complex is due to the closeness of some of its genes. The mMCP-9 transcript and protein were observed in the jejunal submucosa of Trichinella spiralis-infected BALB/c mice. However, in normal BALB/c mice, mMCP-9 transcript and protein were found only in those mast cells that reside in the uterus. Thus, the expression of mMCP-9 differs from that of all other chymases. The observation that BALB/c mouse bone marrow-derived mast cells developed with interleukin (IL) 10 and c-kit ligand contain mMCP-9 transcript, whereas those developed with IL-3 do not, indicates that the expression of this particular chymase is regulated by the cytokine microenvironment. Comparative protein structure modeling revealed that mMCP-9 is the only known granule protease with three positively charged regions on its surface. This property may allow mMCP-9 to form multimeric complexes with serglycin proteoglycans and other negatively charged proteins inside the granule. Although mMCP-9 exhibits a >50% overall amino acid sequence identity with its homologous chymases, it has a unique substrate-binding cleft. This finding suggests that each member of the chromosome 14 family of serine proteases evolved to degrade a distinct group of proteins.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读