例如:"lncRNA", "apoptosis", "WRKY"

Genetic analyses of the interactions of the IS1-encoded proteins with the left end of IS1 and its insertion hotspot.

J. Mol. Biol.1997 Apr 4;267(3):548-60
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Insertion sequence IS1 specifies the InsA, delta InsA-B'-InsB and InsA-B'-InsB protein species. These three proteins have the identical alpha-helix-turn-alpha-helix motif that is likely to be responsible for DNA binding. In fact, InsA binds to the ends of IS1, and regulates gene expression and transposition of IS1. delta InsA-B'-InsB and/or InsA-B'-InsB has been thought to possess a transposase-like activity. Here, I examined the actions of these proteins in vivo on the promoter (pinsL) in the left end of IS1. InsA repressed pinsL-driven gene expression, both in cis and in trans. delta InsA-B'-InsB inhibited it efficiently only when pinsL was located near the construct where delta InsA-B'-InsB is expressed. Furthermore, it has been shown that the possible -10 sequence of pinsL is required for delta InsA-B'-InsB to act on, but the -35 sequence where InsA binds specifically, is not. InsA-B'-InsB appeared not to work on a nearby pinsL. The cis-action of delta InsA-B'-InsB is consistent with the previous observation that the IS1 transposase acts preferentially in cis. Interestingly, delta InsA-B'-InsB acted on a nearby P3 promoter in the IS1 insertion hotspot, and on another promoter outside the hotspot. delta InsA-B'-InsB may generally interact with the regions in or around promoters owing to their low DNA helix stability. Note that IS1 transposes preferentially into A + T-rich DNA segments, and that DNA is unwound from the -10 region of a promoter in transcription. The cis-preference of delta InsA-B'-InsB would result in an overall reduction of transposition of IS1 and its defective copy in a cell, allowing stable existence of the element in its bacterial host.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读