例如:"lncRNA", "apoptosis", "WRKY"

Role of Escherichia coli histone-like nucleoid-structuring protein in bacterial metabolism and stress response--identification of targets by two-dimensional electrophoresis.

Eur. J. Biochem.1997 Mar 15;244(3):767-73. doi:10.1111/j.1432-1033.1997.00767.x
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


The histone-like nucleoid-structuring protein, H-NS, is a major bacterial chromatin component which influences DNA structure and gene expression. Mutations in hns, the structural gene of H-NS protein, have been shown to result in highly pleiotropic effects in Escherichia coli cells. In this study, we have initiated an index of the proteins whose synthesis is, directly or indirectly regulated by H-NS. Using two-dimensional gel electrophoresis, we have examined the global changes in gene expression which occured in an hns background compared with its wild-type parent. In addition, we analysed the effects of mutations in two other genes i.e. lrp and pta, which are also involved in global regulatory pathways. Although these comparative analyses revealed several common differences, thus suggesting possible interactions between these regulatory mechanisms, i.e. H-NS, Lrp (leucine-responsive regulatory protein) and acetylphosphate, the most extensive modifications occurred in an hns mutant. Among the polypeptides whose level of synthesis was specifically altered in an hns mutant, several corresponded to H-NS targets previously identified by classical selection methods. Moreover, the present study allows us to characterize several H-NS targets, which were identified either by comparison with the E. coli two-dimensional reference maps or by microsequencing procedure. Many of these newly identified polypeptides are involved in adaptation of E. coli cells to environmental challenges, and one of them could be involved in bacterial virulence. Finally, synthesis of several proteins belonging to the heat-shock regulon, more particularly molecular chaperones, was induced in an hns mutant.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读