例如:"lncRNA", "apoptosis", "WRKY"

Ribonucleotide reductase in the archaeon Pyrococcus furiosus: a critical enzyme in the evolution of DNA genomes?

Proc. Natl. Acad. Sci. U.S.A.1997 Jan 21;94(2):475-8. doi:10.1073/pnas.94.2.475
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Ribonucleotide reductase (RNR), the enzyme responsible for deoxyribonucleotide synthesis, has been isolated from Pyrococcus furiosus, a deeply branching hyperthermophilic, strictly anaerobic archaeon. Its gene has been cloned, sequenced, and shown to harbor two insertions encoding inteins. The purified enzyme absolutely requires adenosylcobalamin for activity, a trait that defines it as a member of class II (adenosyl-cobalamin-dependent) prokaryotic RNRs. On the other hand, the archaeal RNR has significant amino acid sequence homology with class I (aerobic non-heme iron-dependent) and class III (anaerobic iron-sulfur-dependent) RNRs present in eukaryotes and bacteria, respectively. It is proposed that this enzyme may be the closest possible relative of the original RNR, which allowed the key "RNA world" to "DNA world" transition, and that the different classes of present-day RNRs are the products of divergent evolution.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读