例如:"lncRNA", "apoptosis", "WRKY"

Molecular and phylogenetic characterization of pyruvate and 2-ketoisovalerate ferredoxin oxidoreductases from Pyrococcus furiosus and pyruvate ferredoxin oxidoreductase from Thermotoga maritima.

J. Bacteriol.1996 Jan;178(1):248-57. doi:10.1128/jb.178.1.248-257.1996
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Previous studies have shown that the hyperthermophilic archaeon Pyrococcus furiosus contains four distinct cytoplasmic 2-ketoacid oxidoreductases (ORs) which differ in their substrate specificities, while the hyperthermophilic bacterium Thermotoga maritima contains only one, pyruvate ferredoxin oxidoreductase (POR). These enzymes catalyze the synthesis of the acyl (or aryl) coenzyme A derivative in a thiamine PPi-dependent oxidative decarboxylation reaction with reduction of ferredoxin. We report here on the molecular analysis of the POR (por) and 2-ketoisovalerate ferredoxin oxidoreductase (vor) genes from P. furiosus and of the POR gene from T. maritima, all of which comprise four different subunits. The operon organization for P. furiosus POR and VOR was porG-vorDAB-porDAB, wherein the gamma subunit is shared by the two enzymes. The operon organization for T. maritima POR was porGDAB. The three enzymes were 46 to 53% identical at the amino acid level. Their delta subunits each contained two ferredoxin-type [4Fe-4S] cluster binding motifs (CXXCXXCXXXCP), while their beta subunits each contained four conserved cysteines in addition to a thiamine PPi-binding domain. Amino-terminal sequence comparisons show that POR, VOR, indolepyruvate OR, and 2-ketoglutarate OR of P. furiosus all belong to a phylogenetically homologous OR family. Moreover, the single-subunit pyruvate ORs from mesophilic and moderately thermophilic bacteria and from an amitochondriate eucaryote each contain four domains which are phylogenetically homologous to the four subunits of the hyperthermophilic ORs (27% sequence identity). Three of these subunits are also homologous to the dimeric POR from a mesophilic archaeon, Halobacterium halobium (21% identity). A model is proposed to account for the observed phenotypes based on genomic rearrangements of four ancestral OR subunits.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读