例如:"lncRNA", "apoptosis", "WRKY"

A novel small nucleolar RNA (U16) is encoded inside a ribosomal protein intron and originates by processing of the pre-mRNA.

EMBO J. 1993 Jul;12(7):2921-8. doi:10.1002/j.1460-2075.1993.tb05954.x
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


We report that the third intron of the L1 ribosomal protein gene of Xenopus laevis encodes a previously uncharacterized small nucleolar RNA that we called U16. This snRNA is not independently transcribed; instead it originates by processing of the pre-mRNA in which it is contained. Its sequence, localization and biosynthesis are phylogenetically conserved: in the corresponding intron of the human L1 ribosomal protein gene a highly homologous region is found which can be released from the pre-mRNA by a mechanism similar to that described for the amphibian U16 RNA. The presence of a snoRNA inside an intron of the L1 ribosomal protein gene and the phylogenetic conservation of this gene arrangement suggest an important regulatory/functional link between these two components.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读