例如:"lncRNA", "apoptosis", "WRKY"

Origin of carbon atoms of biotin. 13C-NMR studies on biotin biosynthesis in Escherichia coli.

Eur. J. Biochem.1994 Mar 01;220(2):585-91. doi:10.1111/j.1432-1033.1994.tb18659.x
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


The origin of the carbon atoms of pimeloyl-CoA, the earliest known precursor in the pathway of de novo biotin biosynthesis in Escherichia coli, was investigated by 13C-NMR spectroscopy. In fermentation of the biotin-overproducing DRK332/pXBA312 strain of Escherichia coli (a repressor mutant carrying a biotin operon fragment in the plasmid), a high dose of L-alanine (8 g/l) stimulated dethiobiotin and biotin accumulation. Although L-alanine is a known precursor of 7-keto-8-aminopelargonic acid in biotin biosynthesis, the 13C-NMR spectrum of dethiobiotin showed that the C-3 of L-[3-13C]alanine was incorporated into not only the methyl carbon (C-9) but also alternate carbons (C-2, C-4, C-6) of the side chain, and these latter positions are the same as those labeled with D-[1-13C]glucose. These data indicate that L-alanine can act as an alternative carbon source, suggesting that acetyl-CoA is a possible precursor for pimeloyl-CoA synthesis. In accordance with this hypothesis, the C-1 of sodium (1-13C)acetate and the C-2 of sodium (2-13C)acetate were incorporated into alternate carbons in the side chain of dethiobiotin, i.e., (C-1, C-3, C-5, C-7) and (C-1, C-2, C-4, C-6), respectively. These results suggested firstly that in E. coli pimeloyl-CoA is biosynthesized from L-alanine and/or acetate via acetyl-CoA, but not via pimelic acid, which has been suggested as a biotin precursor in other species, and secondly that the carboxyl group of biotin originates from carbon dioxide produced through the tricarboxylic acid cycle.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读