[No authors listed]
There is growing evidence that AT-rich promoter elements play a role in transcription of plant genes. For the promoter of the nuclear gene for chloroplast glutamine synthetase from pea (GS2), the deletion of a 33-bp AT-rich sequence (box 1 native) from the 5' end of a GS2 promoter-beta-glucuronidase (GUS) fusion resulted in a 10-fold reduction in GUS activity. The box 1 native element was used in gel shift analysis and two distinct complexes were detected. One complex is related to the low-mobility complex reported previously for AT-rich elements from several other plant promoters. A multimer of the box 1 sequence was used to isolate a cDNA encoding an AT-rich DNA binding protein (ATBP-1). ATBP-1 is not a high-mobility group protein, but it is a novel protein that combines a high-mobility group I/Y-like DNA binding domain with a glutamine-rich putative transcriptional domain.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |