例如:"lncRNA", "apoptosis", "WRKY"

A multidrug resistance transporter/serine protease gene is required for prestalk specialization in Dictyostelium.

Genes Dev.1995 May 01;9(9):1111-22. doi:10.1101/gad.9.9.1111
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


The prestalk-specific gene, tagB, was disrupted by restriction enzyme-mediated integration (REMI) mutagenesis. Mutant aggregates exhibit a cell-autonomous defect in specialization of PST-A cells, a prestalk subpopulation that forms the tip and eventually forms the stalk of the fruiting body. Cooperative (non-cell-autonomous) defects were found in sporulation and in specialization of prestalk cells that eventually form the upper cup of the fruiting body (PST-O). The pattern of ecmA::lacZ expression in mutant tagB- cells defines a primary prestalk population, PST-I, from which other prestalk cells differentiate. After PST-A cells differentiate, they induce remaining PST-I cells to become PST-O cells. Subsequently, prestalk cells induce encapsulation of prespore cells during culmination. tagB is homologous to serine protease and to multidrug resistance (MDR) transporter genes, implying a mechanism of action that includes proteolysis and export of peptide signals. Intercellular communication via TagB may mediate integration of cellular differentiation with morphogenesis.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读