例如:"lncRNA", "apoptosis", "WRKY"

CaMKIIδ Met281/282 oxidation is not required for recovery of calcium transients during acidosis.

Am J Physiol Heart Circ Physiol. 2021 Mar 01;320(3):H1199-H1212. doi:10.1152/ajpheart.00040.2020. Epub 2021 Jan 15
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


CaMKII is needed for the recovery of Ca2+ transients during acidosis but also mediates postacidic arrhythmias. CaMKIIδ can sustain its activity following Met281/282 oxidation. Increasing cytosolic Na+ during acidosis as well as postacidic pH normalization should result in prooxidant conditions within the cell favoring oxidative CaMKIIδ activation. We tested whether CaMKIIδ activation through Met281/282 oxidation is involved in recovery of Ca2+ transients during acidosis and promotes cellular arrhythmias post-acidosis. Single cardiac myocytes were isolated from a well-established mouse model in which CaMKIIδ was made resistant to oxidative activation by knock-in replacement of two oxidant-sensitive methionines (Met281/282) with valines (MM-VV). MM-VV myocytes were exposed to extracellular acidosis (pHo 6.5) and compared to wild type (WT) control cells. Full recovery of Ca2+ transients was observed in both WT and MM-VV cardiac myocytes during late-phase acidosis. This was associated with comparably enhanced sarcoplasmic reticulum Ca2+ load and preserved CaMKII specific phosphorylation of phospholamban at Thr17 in MM-VV myocytes. CaMKII was phosphorylated at Thr287, but not Met281/282 oxidized. In line with this, postacidic cellular arrhythmias occurred to a similar extent in WT and MM-VV cells, whereas inhibition of CaMKII using AIP completely prevented recovery of Ca2+ transients during acidosis and attenuated postacidic arrhythmias in MM-VV cells. Using genetically altered cardiomyocytes with cytosolic expression of redox-sensitive green fluorescent protein-2 coupled to glutaredoxin 1, we found that acidosis has a reductive effect within the cytosol of cardiac myocytes despite a significant acidosis-related increase in cytosolic Na+. Our study shows that activation of CaMKIIδ through Met281/282 oxidation is neither required for recovery of Ca2+ transients during acidosis nor relevant for postacidic arrhythmogenesis in isolated cardiac myocytes. Acidosis reduces the cytosolic glutathione redox state of isolated cardiac myocytes despite a significant increase in cytosolic Na+. Pharmacological inhibition of global CaMKII activity completely prevents recovery of Ca2+ transients and protects from postacidic arrhythmias in MM-VV myocytes, which confirms the relevance of CaMKII in the context of acidosis.NEW & NOTEWORTHY The current study shows that activation of CaMKIIδ through Met281/282 oxidation is neither required for CaMKII-dependent recovery of Ca2+ transients during acidosis nor relevant for the occurrence of postacidic cellular arrhythmias. Despite a usually prooxidant increase in cytosolic Na+, acidosis reduces the cytosolic glutathione redox state within cardiac myocytes. This novel finding suggests that oxidation of cytosolic proteins is less likely to occur during acidosis.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读