[No authors listed]
Removal of senescent cells (senolysis) has been proposed to be beneficial for improving age-associated pathologies, but the molecular pathways for such senolytic activity have not yet emerged. Here, we identified glutaminase 1 (GLS1) as an essential gene for the survival of human senescent cells. The intracellular pH in senescent cells was lowered by lysosomal membrane damage, and this lowered pH induced kidney-type glutaminase (KGA) expression. The resulting enhanced glutaminolysis induced ammonia production, which neutralized the lower pH and improved survival of the senescent cells. Inhibition of KGA-dependent glutaminolysis in aged mice eliminated senescent cells specifically and ameliorated age-associated organ dysfunction. Our results suggest that senescent cells rely on glutaminolysis, and its inhibition offers a promising strategy for inducing senolysis in vivo.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |