例如:"lncRNA", "apoptosis", "WRKY"

Molecular mechanism of the repressive phase of the mammalian circadian clock.

Proc Natl Acad Sci U S A. 2021 Jan 12;118(2). Epub 2020 Dec 21
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


The mammalian circadian clock consists of a transcription-translation feedback loop (TTFL) composed of CLOCK-BMAL1 transcriptional activators and CRY-PER transcriptional repressors. Previous work showed that CRY inhibits CLOCK-BMAL1-activated transcription by a "blocking"-type mechanism and that CRY-PER inhibits CLOCK-BMAL1 by a "displacement"-type mechanism. While the mechanism of CRY-mediated repression was explained by both in vitro and in vivo experiments, the CRY-PER-mediated repression in vivo seemed in conflict with the in vitro data demonstrating PER removes CRY from the CLOCK-BMAL1-E-box complex. Here, we show that CRY-PER participates in the displacement-type repression by recruiting CK1δ to the nucleus and mediating an increased local concentration of CK1δ at CLOCK-BMAL1-bound promoters/enhancers and thus promoting the phosphorylation of CLOCK and dissociation of CLOCK-BMAL1 along with CRY from the E-box. Our findings bring clarity to the role of PER in the dynamic nature of the repressive phase of the TTFL.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读