例如:"lncRNA", "apoptosis", "WRKY"

Bioinformatic Analysis of Differentially Expressed Genes and Screening of Hub Genes in Uveal Melanoma Cells with BRCA1-Associated Protein 1 Related Protein 1 Depletion.

J Biomed Nanotechnol. 2020 Aug 01;16(8):1205-1218. doi:10.1166/jbn.2020.2968
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Recent studies have found that chromosome 3 is frequently mutated in metastatic uveal melanoma (UVM), which leads to the loss of BAP1 expression or the weakening of BRCA1-associated protein 1 (BAP1) function and promotes metastasis of uveal melanoma cells. However, the specific signaling pathways that are affected by BAP1 depletion in uveal melanoma remain unclear. Our aim in this study was to verify the effect and regulatory mechanism of BAP1 on uveal melanoma. RT-qPCR and western blotting results showed that BAP1 was significantly down-regulated in OCM-1A cells treated with a BAP1 shRNA vector. MTT, cell scratch and transwell migration assays showed that low expression of BAP1 significantly promoted the proliferation and migration of UVM cells. A total of 269 up-regulated and 807 down-regulated genes were identified from the combined GSE110193 and GSE48863 data sets. These differentially expressed genes are mainly involved in the composition of extracellular matrix and the regulation of the Wnt signaling pathway and are closely related to the cell adhesion pathway. CXCL8, COL5A3, COL11A1, and COL12A1 were among the differentially expressed genes and are closely related to the prognosis of UVM. Therefore, the deletion of BAP1 is closely related to poor prognosis of UVM and is a risk factor for UVM metastasis. The potential targets of BAP1 include CXCL8, COL5A3, COL11A1, and COL12A1. It is believed that BAP1 regulates UVM cell adhesion through these four genes and ultimately regulates tumor development and migration.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读