[No authors listed]
Cadmium (Cd) pollution in agricultural soil has always been a knotty problem, which made it necessary to find the mechanism related to Cd transport in plant. In this study, we found a novel character of the CIPK11 modulating the transport of Cd in Arabidopsis thaliana. Over-expression of CIPK11 (CIPK11OE#1-7, CIPK11OE#8-5) resulted in the increased tolerance to Cd stress, which embodied in higher fresh weight, lower Cd enrichment and reactive oxygen species than the wild-type (WT) plants. qRT-PCR results showed a collective down-regulation of the expression of IRT1 and transcription factor genes FIT, bHLH039 in the CIPK11-overexpression plants after Cd stress. Overexpression of CIPK11 significantly increased the expression of ABA marker genes in Arabidopsis after Cd stress. With different concentrations of ABA treatment, the root length differences caused by Cd stress could be recovered. However the transcription levels of FIT and bHLH039 decreased in WT and cipk11 mutant when treated with ABA which indicated that ABA can inhibit the transcription of IRT1 by repressing FIT and bHLH039 expression. Taken together, our results demonstrated that the kinase CIPK11 responses to Cd stress by ABA signaling pathway.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |