例如:"lncRNA", "apoptosis", "WRKY"

The E3 ligase UBR2 regulates cell death under caspase deficiency via Erk/MAPK pathway.

Cell Death Dis. 2020 Dec 08;11(12):1041
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Escape from cell death is a key event in cancer establishment/progression. While apoptosis is often considered as the main cell death pathway, upon caspase inhibition, cell death is rather delayed than blocked leading to caspase-independent cell death (CICD). Although described for years, CICD's underlying mechanism remains to be identified. Here, we performed a genome-wide siRNA lethality screening and identified the RING-Type E3 Ubiquitin Transferase (UBR2) as a specific regulator of CICD. Strikingly, UBR2 downregulation sensitized cells towards CICD while its overexpression was protective. We established that UBR2-dependent protection from CICD was mediated by the MAPK/Erk pathway. We then observed that UBR2 is overexpressed in several cancers, especially in breast cancers and contributes to CICD resistance. Therefore, our work defines UBR2 as a novel regulator of CICD, found overexpressed in cancer cells, suggesting that its targeting may represent an innovative way to kill tumor cells.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读