例如:"lncRNA", "apoptosis", "WRKY"

miR-221 Exerts Neuroprotective Effects in Ischemic Stroke by Inhibiting the Proinflammatory Response.

J Stroke Cerebrovasc Dis. 2021 Feb;30(2):105489. Epub 2020 Dec 01
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


BACKGROUND:Ischemic stroke is clearly affected by microRNAs (miRNAs) due to dysfunction of their regulatory networks. Our clinical data confirmed decreased miR-221 levels in plasma collected from patients with acute ischemia compared with plasma from healthy controls. Therefore, we further aimed to demonstrate the regulatory mechanisms by which miR-221 exerts its neuroprotective effects in acute ischemic brain injury. METHODS:Middle cerebral artery occlusion (MCAO) was used to establish focal cerebral ischemia in adult male C57BL/6 mice. A miR-221 mimic or a negative mimic control was injected by intracerebroventricular administration 24 h prior to MCAO. After 48 h, cerebral infarction volume and neurological scores were calculated, and to determine the extent of neuroprotection by miR-221, neurobehavioral tests were performed. Quantitative real-time PCR, ELISA, and flow cytometry were also performed to identify the expression of inflammation-related cytokines and chemokines as well as infiltration/activation of various immune cells in the brain. RESULTS:The results showed that MCAO mice treated with a miR-221 mimic exhibited significantly decreased cerebral infarction volume and increased amelioration of behavioral deficits. Moreover, the expression of proinflammatory cytokines (TNF-α, MCP-1, VCAM-1, and IL-6) and chemokines (CCL2 and CCL3) was significantly decreased in the miR-221 mimic-treated group. In addition, the flow cytometry data showed that macrophage infiltration and microglial activation were blocked by miR-221 treatment. CONCLUSION:our results indicate that miR-221 could decrease brain damage in the setting of acute ischemic stroke by inhibiting the proinflammatory response, which furthered our understanding of the molecular basis of miR-221 and provided a new potential therapeutic target for the treatment of ischemic stroke .

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读