例如:"lncRNA", "apoptosis", "WRKY"

Microfluidic-Based Detection of AML-Specific Biomarkers Using the Example of Promyelocyte Leukemia.

Int J Mol Sci. 2020 Nov 25;21(23)
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


A microfluidic assay for the detection of promyelocytic leukemia (PML)-retinoic acid receptor α (RARα) fusion protein was developed. This microfluidic-based system can be used for rapid personalized differential diagnosis of acute promyelocyte leukemia (APL) with the aim of early initiation of individualized therapy. The fusion protein PML-RARα occurs in 95% of acute promyelocytic leukemia cases and is considered as diagnostically relevant. The fusion protein is formed as a result of translocation t(15,17) and is detected in the laboratory by fluorescence in situ hybridization (FISH) or reverse transcriptase polymerase chain reaction (RT-PCR). Diagnostic methods require many laboratory steps with specialized staff. The developed microfluidic assay includes a sandwich enzyme-linked immunosorbent assay (ELISA) system for PML-RARα on surface of magnetic microparticles in a microfluidic chip. A rapid detection of PML-RARα in cell lysates is achieved in less than one hour. A biotinylated PML-antibody on the surface of magnetic streptavidin coated microparticles is used as capture antibody. The bound translocation product is detected by a RARα antibody conjugated with horseradish peroxidase and the substrate QuantaRed. The analysis is performed in microfluidic channels which involves automated liquid processing with stringent washing and short incubation times. The results of the developed assay show that cell lysates of PML-RARα-positive cells (NB-4) can be clearly distinguished from PML-RARα-negative cells (HL-60, MV4-11).

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读