例如:"lncRNA", "apoptosis", "WRKY"

PKCα mediated by the PI3K/Akt-FOXA1 cascade facilitates cypermethrin-induced hyperthyroidism.

Sci Total Environ. 2021 Feb 25;757:143727. Epub 2020 Nov 20
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Cypermethrin (CYP), a broad-spectrum pyrethroid insecticide is extensively used. CYP is also considered as a potential endocrine disruptor with the thyroid-disturbing property. Protein kinase C alpha is a pleiotropic signal transduction molecule that functions crucially in thyroid hormone (TH) homeostasis and thyroid functions. To explore underlying roles of in CYP-mediated disturbance of TH homeostasis, Sprague-Dawley rats and rat thyroid cells were used in this study. Results showed that β-CYP stimulated TH biosynthesis, as shown by the increase in plasma levels of TT4, FT4, TT3, FT3, and TSH. After β-CYP treatment, expressions of three miRNAs (miR-17-5p, miR-330-3p, and miR-331-3p), thyroid transcription factor TTF-1, and thyroid-specific proteins (TSHr, TPO, and Tg) were significantly increased, while expressions of PI3K p110α, p-Akt, FOXA1, and thyroid transcription factors (TTF-2 and Pax8) were decreased. Further studies found that β-CYP induced duanyu1531α translation by the miR-330-3p-targeted PI3K/Akt-FOXA1 cascade and then duanyu1531α positively regulated TTF-1 to promote TPO and Tg expressions, which in turn facilitated TH biosynthesis. Likewise, duanyu1531α positively modulated TSHr expressions to strengthen the TSH/TSHr signal in the HPT axis, thereby synergistically contributing to TH biosynthesis. Moreover, β-CYP also disturbed TH biotransformation and biotransport by inducing DIO1 and inhibiting DIO3 in thyroids and TTR expressions in livers. Taken together, β-CYP has the thyroid-disturbing effect and could promote TH biosynthesis, and duanyu1531α plays vital roles in β-CYP-caused hyperthyroidism.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读