例如:"lncRNA", "apoptosis", "WRKY"

Long non-conding RNA LOXL1-AS1 sponges miR-589-5p to up-regulate CBX5 expression in renal cell carcinoma.

Biosci Rep. 2020 Nov 27;40(11)
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


BACKGROUND:Renal cell carcinoma (RCC) is a common malignant tumor that seriously endangers people's health. In recent years, long non-coding RNAs (lncRNAs) have been discovered to play vital roles in diverse cancers, including RCC. LncRNA lysyl oxidase like 1 antisense RNA 1 (LOXL1-AS1) has been found to exert carcinogenic functions in several cancers, but its role and mechanism in RCC have not been investigated. METHODS:qRT-PCR was utilized for testing RNA expression and Western blot for protein expression in RCC tissues or cells. Then, we assessed cell function by conducting a series of functional experiments, such as 5-ethynyl-2'-deoxyuridine staining, colony formation, flow cytometry, JC-1, Western blot and transwell migration experiments. Following, RNA immunoprecipitation, pull down and luciferase reporter experiments were carried out to explore the regulatory mechanisms of LOXL1-AS1 in RCC. RESULTS:LOXL1-AS1 was highly expressed in RCC tissues and cells. Moreover, knockdown of LOXL1-AS1 hampered RCC cell proliferation and migration. Importantly, miR-589-5p that was lowly expressed and worked as a tumor-inhibitor in RCC was found to bind with LOXL1-AS1. Furthermore, chromobox 5 (CBX5) targeted by miR-589-5p could expedite cell proliferation and migration in RCC. Finally, overexpressed CBX5 or inhibited miR-589-5p reversed the repressive impacts of silenced LOXL1-AS1 on RCC malignant phenotypes. CONCLUSIONS:LncRNA LOXL1-AS1 sequestered miR-589-5p to augment CBX5 expression in RCC cells, opening a new way for potential development in RCC treatment. © 2020 The Author(s).

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读