例如:"lncRNA", "apoptosis", "WRKY"

Redox-mediated regulation of an evolutionarily conserved cross-β structure formed by the TDP43 low complexity domain.

Proc Natl Acad Sci U S A. 2020 Nov 17;117(46):28727-28734. Epub 2020 Nov 03
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


A methionine-rich low complexity (LC) domain is found within a C-terminal region of the TDP43 RNA-binding protein. Self-association of this domain leads to the formation of labile cross-β polymers and liquid-like droplets. Treatment with H2O2 caused phenomena of methionine oxidation and droplet melting that were reversed upon exposure of the oxidized protein to methionine sulfoxide reductase enzymes. Morphological features of the cross-β polymers were revealed by H2O2-mediated footprinting. Equivalent TDP43 LC domain footprints were observed in polymerized hydrogels, liquid-like droplets, and living cells. The ability of H2O2 to impede cross-β polymerization was abrogated by the prominent M337V amyotrophic lateral sclerosis-causing mutation. These observations may offer insight into the biological role of TDP43 in facilitating synapse-localized translation as well as aberrant aggregation of the protein in neurodegenerative diseases.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读