例如:"lncRNA", "apoptosis", "WRKY"

TAZ/Wnt-β-catenin/c-MYC axis regulates cystogenesis in polycystic kidney disease.

Proc Natl Acad Sci U S A. 2020 Nov 17;117(46):29001-29012. Epub 2020 Oct 29
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Autosomal-dominant polycystic kidney disease (ADPKD) is the most common genetic renal disease, primarily caused by germline mutation of PKD1 or PKD2, leading to end-stage renal disease. The Hippo signaling pathway regulates organ growth and cell proliferation. Herein, we demonstrate the regulatory mechanism of cystogenesis in ADPKD by transcriptional coactivator with PDZ-binding motif (TAZ), a Hippo signaling effector. TAZ was highly expressed around the renal cyst-lining epithelial cells of Pkd1-deficient mice. Loss of Taz in Pkd1-deficient mice reduced cyst formation. In wild type, TAZ interacted with PKD1, which inactivated β-catenin. In contrast, in PKD1-deficient cells, TAZ interacted with AXIN1, thus increasing β-catenin activity. Interaction of TAZ with AXIN1 in PKD1-deficient cells resulted in nuclear accumulation of TAZ together with β-catenin, which up-regulated c-MYC expression. Our findings suggest that the PKD1-TAZ-Wnt-β-catenin-c-MYC signaling axis plays a critical role in cystogenesis and might be a potential therapeutic target against ADPKD. Copyright © 2020 the Author(s). Published by

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读