例如:"lncRNA", "apoptosis", "WRKY"

PRKAR2B-HIF-1α loop promotes aerobic glycolysis and tumour growth in prostate cancer.

Cell Prolif. 2020 Nov;53(11):e12918. doi:10.1111/cpr.12918. Epub 2020 Oct 07
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


OBJECTIVES:Reprogramming of cellular metabolism is profoundly implicated in tumorigenesis and can be exploited to cancer treatment. Cancer cells are known for their propensity to use glucose-dependent glycolytic pathway instead of mitochondrial oxidative phosphorylation for energy generation even in the presence of oxygen, a phenomenon known as Warburg effect. The type II beta regulatory subunit of protein kinase A PRKAR2B, is highly expressed in castration-resistant prostate cancer (CRPC) and contributes to tumour growth and metastasis. However, whether PRKAR2B regulates glucose metabolism in prostate cancer remains largely unknown. MATERIALS AND METHODS:Loss-of-function and gain-of-function studies were used to investigate the regulatory role of PRKAR2B in aerobic glycolysis. Real-time qPCR, Western blotting, luciferase reporter assay and chromatin immunoprecipitation were employed to determine the underlying mechanisms. RESULTS:PRKAR2B was sufficient to enhance the Warburg effect as demonstrated by glucose consumption, lactate production and extracellular acidification rate. Mechanistically, loss-of-function and gain-of-function studies showed that PRKAR2B was critically involved in the tumour growth of prostate cancer. PRKAR2B was able to increase the expression level of hypoxia-inducible factor 1α (HIF-1α), which is a key mediator of the Warburg effect. Moreover, we uncovered that HIF-1α is a key transcription factor responsible for inducing PRKAR2B expression in prostate cancer. Importantly, inhibition of glycolysis by the glycolytic inhibitor 2-deoxy-d-glucose (2-DG) or replacement of glucose in the culture medium with galactose (which has a much lower rate than glucose entry into glycolysis) largely compromised PRKAR2B-mediated tumour-promoting effect. Similar phenomenon was noticed by genetic silencing of HIF-1α. CONCLUSIONS:Our study identified that PRKAR2B-HIF-1α loop enhances the Warburg effect to enable growth advantage in prostate cancer. © 2020 The Authors. Published by John Wiley & Sons Ltd.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读