例如:"lncRNA", "apoptosis", "WRKY"

MiR-22-3p inhibits fibrotic cataract through inactivation of HDAC6 and increase of α-tubulin acetylation.

Cell Prolif. 2020 Nov;53(11):e12911. doi:10.1111/cpr.12911. Epub 2020 Sep 28
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


OBJECTIVES:Fibrotic cataract, including posterior capsule opacification (PCO) and anterior subcapsular cataract (ASC), renders millions of people visually impaired worldwide. However, the underlying mechanism remains poorly understood. Here, we report a miRNA-based regulatory pathway that controls pathological fibrosis of lens epithelium. MATERIALS AND METHODS:Expression of miR-22-3p and histone deacetylase 6 (HDAC6) in normal and PCO patient samples were measured by qPCR. Human lens epithelial explants were treated with TGF-β2 in the presence or absence of miR-22-3p mimics or inhibitor. Cell proliferation was determined by MTS assay, and migration was tested by transwell assay. Expression of HDAC6 and EMT-related molecules were analysed by Western blot, qPCR and immunocytochemical experiments. RESULTS:We identify miR-22-3p as a downregulated miRNA targeting HDAC6 in LECs during lens fibrosis and TGF-β2 treatment. Mechanistically, gain- and loss-of-function experiments in human LECs and lens epithelial explants reveal that miR-22-3p prevents proliferation, migration and TGF-β2 induced EMT of LECs via targeting HDAC6 and thereby promoting α-tubulin acetylation. Moreover, pharmacological targeting of HDAC6 deacetylase with Tubacin prevents fibrotic opaque formation through increasing α-tubulin acetylation under TGF-β2 stimulated conditions in both human lens epithelial explants and the whole rat lenses. CONCLUSIONS:These findings suggest that miR-22-3p prevents lens fibrotic progression by targeting HDAC6 thereby promoting α-tubulin acetylation. The 'miR-22-HDAC6-α-tubulin (de)acetylation' signalling axis may be therapeutic targets for the treatment of fibrotic cataract.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读