例如:"lncRNA", "apoptosis", "WRKY"

A Granulocytic Signature Identifies COVID-19 and Its Severity.

J Infect Dis. 2020 Nov 13;222(12):1985-1996
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


BACKGROUND:An unbiased approach to SARS-CoV-2-induced immune dysregulation has not been undertaken so far. We aimed to identify previously unreported immune markers able to discriminate COVID-19 patients from healthy controls and to predict mild and severe disease. METHODS:An observational, prospective, multicentric study was conducted in patients with confirmed mild/moderate (n = 7) and severe (n = 19) COVID-19. Immunophenotyping of whole-blood leukocytes was performed in patients upon hospital ward or intensive care unit admission and in healthy controls (n = 25). Clinically relevant associations were identified through unsupervised analysis. RESULTS:Granulocytic (neutrophil, eosinophil, and basophil) markers were enriched during COVID-19 and discriminated between patients with mild and severe disease. Increased counts of CD15+CD16+ neutrophils, decreased granulocytic expression of integrin CD11b, and Th2-related CRTH2 downregulation in eosinophils and basophils established a COVID-19 signature. Severity was associated with emergence of PD-L1 checkpoint expression in basophils and eosinophils. This granulocytic signature was accompanied by monocyte and lymphocyte immunoparalysis. Correlation with validated clinical scores supported pathophysiological relevance. CONCLUSIONS:Phenotypic markers of circulating granulocytes are strong discriminators between infected and uninfected individuals as well as between severity stages. COVID-19 alters the frequency and functional phenotypes of granulocyte subsets with emergence of CRTH2 as a disease biomarker.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读