[No authors listed]
Prostate cancer is the second leading cause of cancer-related death worldwide. Radiotherapy is often applied for the treatment, but radioresistance is a challenge in some patients. MicroRNAs have been reported to be involved in the DNA damage response induced by ionizing radiation and recent studies have reported microRNA-mediated radiosensitivity. In the present study, we found microRNA-107 (miR-107) enhanced radiosensitivity by regulating granulin (GRN) in prostate cancer (PC-3) cells. MiR-107 was downregulated and GRN was upregulated in response to ionizing radiation in PC-3 cells. Overexpression of miR-107 and knockdown of GRN promoted the sensitivity of PC3 cells to ionizing radiation. By rescue experiments of GRN, we revealed that radiosensitivity enhanced by miR-107 can be attenuated by GRN overexpression in PC-3 cells. Furthermore, we showed miR-107 enhanced radiation-induced G1/S phase arrest and G2/M phase transit, and identify delayed apoptosis by suppressing p21 and phosphorylation of CHK2. Collectively, these results highlight an unrecognized mechanism of miR-107-mediated GRN regulation in response to ionizing radiation and may advance therapeutic strategies for the treatment of prostate cancer.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |