例如:"lncRNA", "apoptosis", "WRKY"

Loss of GM130 does not impair oocyte meiosis and embryo development in mice.

Biochem Biophys Res Commun. 2020 Nov 12;532(3):336-340. Epub 2020 Aug 30
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Golgi matrix protein 130 (GM130), encoded by GOLGA2, is the classical marker of the Golgi apparatus. It plays important roles in various mitotic events, such as interacting with importin-alpha and liberating spindle assembly factor TPX2 to regulate mitotic spindle formation. A previous study showed that in vitro knockdown of GM130 could regulate the meiotic spindle pole assembly. In the current study, we found that knockout (KO) mice progressively died, had a small body size and were completely infertile. Furthermore, we constructed an oocyte-specific GM130 knockout mouse model (GM130-ooKO) driven by Gdf9-Cre. Through breeding assays, we found that the GM130-ooKO mice showed similar fecundity as control mice. During superovulation assays, the KO and GM130-ooKO mice had comparable numbers of ovulated eggs, oocyte maturation rates and normal polar bodies, similar to the control groups. Thus, this study indicated that deletion of GM130 might have a limited impact on the maturation and morphology of oocytes. This might due to more than one golgin sharing the same function, with others compensating for the loss of GM130.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读