例如:"lncRNA", "apoptosis", "WRKY"

β2 Integrins differentially regulate γδ T cell subset thymic development and peripheral maintenance.

Proc Natl Acad Sci U S A. 2020 Sep 08;117(36):22367-22377. Epub 2020 Aug 26
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


The γδ T cells reside predominantly at barrier sites and play essential roles in immune protection against infection and cancer. Despite recent advances in the development of γδ T cell immunotherapy, our understanding of the basic biology of these cells, including how their numbers are regulated in vivo, remains poor. This is particularly true for tissue-resident γδ T cells. We have identified the β2 family of integrins as regulators of γδ T cells. β2-integrin-deficient mice displayed a striking increase in numbers of IL-17-producing Vγ6Vδ1+ γδ T cells in the lungs, uterus, and circulation. Thymic development of this population was normal. However, single-cell RNA sequencing revealed the enrichment of genes associated with T cell survival and proliferation specifically in β2-integrin-deficient IL-17+ cells compared to their wild-type counterparts. Indeed, β2-integrin-deficient Vγ6+ cells from the lungs showed reduced apoptosis ex vivo, suggesting that increased survival contributes to the accumulation of these cells in β2-integrin-deficient tissues. Furthermore, our data revealed an unexpected role for β2 integrins in promoting the thymic development of the IFNγ-producing CD27+ Vγ4+ γδ T cell subset. Together, our data reveal that β2 integrins are important regulators of γδ T cell homeostasis, inhibiting the survival of IL-17-producing Vγ6Vδ1+ cells and promoting the thymic development of the IFNγ-producing Vγ4+ subset. Our study introduces unprecedented mechanisms of control for γδ T cell subsets.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读