例如:"lncRNA", "apoptosis", "WRKY"

Smooth muscle 22α deficiency impairs oxytocin-induced uterine contractility in mice at full-term pregnancy.

Biochem Biophys Res Commun. 2020 Sep 03;529(4):884-889. Epub 2020 Jul 28
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Smooth muscle 22α (SM22α, namely Transgelin), as an actin-binding protein, regulates the contractility of vascular smooth muscle cells (VSMCs) by modulation of the stress fiber formation. However, little is known about the roles of SM22α in the regulation of uterine contraction during parturition. Here, we showed that contraction in response to oxytocin (OT) was significantly decreased in the uterine muscle strips from SM22α knockout (Sm22α-KO) mice, especially at full-term pregnancy, which may be resulted from impaired formation of stress fibers. Furthermore, serious mitochondrial damage such as the mitochondrial swelling, cristae disruption and even disappearance were observed in the myometrium of Sm22α-KO mice at full-term pregnancy, eventually resulting in the collapse of mitochondrial membrane potential and impairment in ATP synthesis. Our data indicate that SM22α is necessary to maintain uterine contractility at delivery in mice, and acts as a novel target for preventive or therapeutic manipulation of uterine atony during parturition.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读