例如:"lncRNA", "apoptosis", "WRKY"

Superoxide-induced Type I collagen secretion depends on prolyl 4-hydroxylases.

Biochem Biophys Res Commun. 2020 Sep 03;529(4):1011-1017. Epub 2020 Jul 30
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Reactive oxygen species including superoxide (O2•-) play an important role in a variety of diseases, including Alzheimer's Disease, cancer, and atherosclerosis. Early reports showed that O2•- is a stimulant for collagen synthesis. However, the mechanism remains incompletely understood. Here we showed that LY83583 (6-anilinoquinoline-5,8-quinone), a substance known to induce O2•- production by smooth muscle cell (SMC), increases Type I collagen secretion. This effect could be blocked by treating the cells with Tiron, a scavenger for O2•-. LY83583-induced Type I collagen secretion required P4HA1 and P4HA2. Knockout of either P4ha1 or P4ha2 greatly reduced LY83583-stimulated Type I collagen maturation whereas silencing of both P4ha1 and P4ha2 completely blocked LY83583-induced Type I collagen maturation. Although significantly more hydroxyproline on purified Type I collagen was detected from LY83583 treated mouse embryonic fibroblast (MEF) cells by mass spectrometry, the level of prolyl 4-hydroxylases was not altered. Thus, LY83583 might increase the enzymatic activity of prolyl 4-hydroxylases to increase Type I collagen maturation. In addition, we found that LY83583 activated prolyl 4-hydrolases differed from ascorbate-activated prolyl 4-hydroxylase in two aspects: (1) LY83583 activated both P4HA1 and P4HA2 involved in collagen maturation whereas ascorbate mainly stimulated P4HA1 in collagen maturation; (2) LY83583 did not induce N259 glycosylation on P4HA1 as ascorbate did. The mechanisms remain to be investigated.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读