[No authors listed]
Group 2 innate lymphoid cells (ILC2s) represent a subset of newly discovered immune cells that are involved in immune reactions against microbial pathogens, host allergic reactions, as well as tissue repair. The basic helix-loop-helix transcription factors collectively called E proteins powerfully suppress the differentiation of ILC2s from bone marrow and thymic progenitors while promoting the development of B and T lymphocytes. How E proteins exert the suppression is not well understood. Here we investigated the underlying molecular mechanisms using inducible gain and loss of function approaches in ILC2s and their precursors, respectively. Cross-examination of RNA-seq and ATAC sequencing data obtained at different time points reveals a set of genes that are likely direct targets of E proteins. Consequently, a widespread down-regulation of chromatin accessibility occurs at a later time point, possibly due to the activation of transcriptional repressor genes such as Cbfa2t3 and Jdp2 The large number of genes repressed by gain of E protein function leads to the down-regulation of a transcriptional network important for ILC2 differentiation. © 2020 Peng et al.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |