例如:"lncRNA", "apoptosis", "WRKY"

Protein O-GlcNAc Modification Links Dietary and Gut Microbial Cues to the Differentiation of Enteroendocrine L Cells.

Cell Rep. 2020 Aug 11;32(6):108013
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Intestinal L cells regulate a wide range of metabolic processes, and L-cell dysfunction has been implicated in the pathogenesis of obesity and diabetes. However, it is incompletely understood how luminal signals are integrated to control the development of L cells. Here we show that food availability and gut microbiota-produced short-chain fatty acids control the posttranslational modification on intracellular proteins by O-linked β-N-acetylglucosamine (O-GlcNAc) in intestinal epithelial cells. Via FOXO1 O-GlcNAcylation, O-GlcNAc transferase (OGT) suppresses expression of the lineage-specifying transcription factor Neurogenin 3 and, thus, L cell differentiation from enteroendocrine progenitors. Intestinal epithelial ablation of OGT in mice not only causes L cell hyperplasia and increased secretion of glucagon-like peptide 1 (GLP-1) but also disrupts gut microbial compositions, which notably contributes to decreased weight gain and improved glycemic control. Our results identify intestinal epithelial O-GlcNAc signaling as a brake on L cell development and function in response to nutritional and microbial cues.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读