例如:"lncRNA", "apoptosis", "WRKY"

Disruption of endothelial cell intraflagellar transport protein 88 exacerbates doxorubicin-induced cardiotoxicity.

Life Sci. 2020 Nov 01;260:118216. Epub 2020 Aug 05
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


AIMS:Doxorubicin (DOX) is a potent anticancer drug with severe dose-dependent cardiotoxicity. To address this issue, previous research primarily focused on DOX-induced toxicity on cardiomyocytes. However, more recent research has looked into the endothelium as a therapeutic target due to the emerging role of endothelial cells in the support of cardiomyocyte survival and function. MAIN METHODS:We investigated a novel role of endothelial cell (EC) primary cilia in the prevention of DOX-mediated cardiotoxicity. Mice lacking EC primary cilia, via the deletion of EC-specific intraflagellar protein 88 (IFT88) expression, were administered DOX (20 mg/kg i.p.), and assessed for survival, cardiac function, cardiac structure changes, and indices of cardiomyocyte injury. KEY FINDINGS:DOX-treatment resulted in reduced survival and cardiac function (ejection fraction and fractional shortening) in EC-IFT88-/- mice vs. their similarly treated wild-type littermates. Cardiomyocyte vacuolization, cardiac fibrosis, and serum CK-MB levels were also increased in DOX-treated mice compared to saline-treated controls. However, these parameters were not significantly different when comparing WT and EC-IFT88-/- mice after DOX treatment. SIGNIFICANCE:The loss of EC primary cilia accelerated DOX-mediated mortality and reduced cardiac function, suggesting pathways downstream of ciliary-mediated signal transduction as potential targets to promote EC support of cardiomyocyte function during DOX treatment.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读