例如:"lncRNA", "apoptosis", "WRKY"

Heritable genetic background alters survival and phenotype of Mll-AF9-induced leukemias.

Exp Hematol. 2020 Sep;89:61-67.e3. Epub 2020 Aug 06
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


The MLL-AF9 fusion protein occurring as a result of t(9;11) translocation gives rise to pediatric and adult acute leukemias of distinct lineages, including acute lymphoblastic leukemia (ALL), acute myeloid leukemia (AML), and mixed-phenotype acute leukemia (MPAL). The mechanisms underlying how this same fusion protein results in diverse leukemia phenotypes among different individuals are not well understood. Given emerging evidence from genome-wide association studies that genetic risk factors contribute to MLL-rearranged leukemogenesis, here we tested the impact of genetic background on survival and phenotype of a well-characterized Mll-AF9 knockin mouse model. We crossed this model with five distinct inbred strains (129, A/J, C57BL/6, NOD, CAST) and tested their F1 hybrid progeny for dominant genetic effects on Mll-AF9 phenotypes. We discovered that genetic background altered peripheral blood composition, with Mll-AF9 CAST F1 having a significantly increased B-lymphocyte frequency, while the remainder of the strains exhibited myeloid-biased hematopoiesis, similar to the parental line. Genetic background also had an impact on overall survival, with Mll-AF9 A/J F1 and Mll-AF9 129 F1 having significantly shorter survival and Mll-AF9 CAST F1 having longer survival, compared with the parental line. Furthermore, we observed a range of hematologic malignancies, with Mll-AF9 A/J F1, Mll-AF9 129 F1, and Mll-AF9 B6 F1 developing exclusively myeloid cell malignancies (myeloproliferative disorder [MPD] and AML), whereas a subset of Mll-AF9 NOD F1 developed MPAL and Mll-AF9 CAST F1 developed ALL. This study provides a novel in vivo experimental model in which to evaluate the underlying mechanisms by which MLL-AF9 results in diverse leukemia phenotypes and provides definitive experimental evidence that genetic risk factors contribute to survival and phenotype of MLL-rearranged leukemogenesis.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读