例如:"lncRNA", "apoptosis", "WRKY"

MiR-3662 suppresses cell growth, invasion and glucose metabolism by targeting HK2 in hepatocellular carcinoma cells.

Neoplasma. 2020 Jul;67(4):773-781. Epub 2020 Jul 23
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Hepatocellular carcinoma (HCC) is one of the most common malignancies with a rising incidence around the world. MicroRNAs (miRNAs) have been reported to play essential roles in the progression of HCC. However, the precise mechanism of miR-3662 in the HCC process remains poorly understood. This study was aimed to determine the regulatory network of miR-3662 and hexokinase 2 (HK2) in HCC. Quantitative real-time polymerase chain reaction (qRT-PCR) was performed to detect miR-3662 expression. Cell proliferation and invasion were measured by Cell Counting Kit-8 (CCK-8) assay and Transwell assay, respectively. Glucose consumption and lactate production assays were used to detect glucose metabolism activity in HCC cells. The potential binding sites between miR-3662 and HK2 were predicted by TargetScan online software and the relationship between miR-3662 and HK2 was verified by luciferase report assay. The protein expression of HK2 was measured by western blot analysis. A xenograft tumor model was established to confirm the role of miR-3662 and HK2 in vivo. miR-3662 expression was downregulated in HCC tissues and cells, and it was reduced in hypoxia-induced HCC cells in a time-dependent manner. Overexpression of miR-3662 or knockdown of HK2 inhibited cell proliferation, invasion, and glucose metabolism in HCC cells, which could be reversed by upregulating HK2. Besides, HK2 was a direct target of miR-3662 in HCC cells, and hypoxia upregulated the expression of HK2. In addition, the upregulation of HK2 could abolish miR-3662 overexpression-induced inhibitory effects on tumor growth and glucose metabolism in vivo.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读